
Design and Implementation of Davis Social Links
OSN Kernel

Thomas Tran, Kelcey Chan, Shaozhi Ye, Prantik Bhattacharyya,
Ankush Garg, Xiaoming Lu, and S. Felix Wu

Department of Computer Science
University of California, Davis

{ttran,kchan,sye,pbhattacharyya,garg,lu,sfwu}@ucdavis.edu

Abstract. Social network popularity continues to rise as they broaden out to
more users. Hidden away within these social networks is a valuable set of data
that outlines everyone’s relationships. Networks have created APIs such as the
Facebook Development Platform and OpenSocial that allow developers to create
applications that can leverage user information. However, at the current stage,
the social network support for these new applications is fairly limited in its func-
tionality. Most, if not all, of the existing internet applications such as email, Bit-
Torrent, and Skype cannot benefit from the valuable social network among their
own users. In this paper, we present an architecture that couples two different
communication layers together: the end2end communication layer and the social
context layer, under the Davis Social Links (DSL) project. Our proposed archi-
tecture attempts to preserve the original application semantics (i.e., we can use
Thunderbird or Outlook, unmodified, to read our SMTP emails) and provides the
communicating parties (email sender and receivers) a social context for control
and management. For instance, the receiver can set trust policy rules based on the
social context between the pair, to determine how a particular email in question
should be prioritized for delivery to the SMTP layer. Furthermore, as our archi-
tecture includes two coupling layers, it is then possible, as an option, to shift some
of the services from the original applications into the social context layer. In the
context of email, for example, our architecture allows users to choose operations,
such as reply, reply-all, and forward, to be realized in either the application layer
or the social network layer. And, the realization of these operations under the
social network layer offers powerful features unavailable in the original applica-
tions. To validate our coupling architecture, we have implemented a DSL kernel
prototype as a Facebook application called CyrusDSL (currently about 40 local
users) and a simple communication application combined into the DSL kernel
but is unaware of Facebook’s API.

1 Introduction and Motivation

The rising growth in popularity of online social networks (OSNs) has been phenom-
enal in the last few years. Millions of people connect with one another and maintain
friendships using the available OSNs. As a result, there is a plethora of rich and inter-
esting user data spread across the networks. The user data is not limited to professional
and personal information. It also contains status updates, wall posts (e.g. in Facebook),

B. Liu et al. (Eds.): WASA 2009, LNCS 5682, pp. 527–540, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

528 T. Tran et al.

scraps (e.g. in Orkut), location information, etc. With the growth of OSNs, API’s to let
developers access this data and build applications have been created.

The scope of applications include social games (e.g. Lexulous, various trivia quizzes),
displaying one’s musical tastes, etc. However, under our architecture, we can greatly
expand the set of applications using social networks by providing digested information
gathered and calculated from these OSNs that we believe have never been utilized be-
fore. Software classes such as email, search engines, and online telephony can be easily
modified to gain the advantages that come the social knowledge in these networks. Fur-
thermore, we present methods with which applications can easily utilize a robust system
of trust and reputation inherent to Davis Social Links (DSL) [1].

The graph set present in OSNs due to the interconnection of users is a reflection of
the social human network in the digital format. The hypothesis that social networks are
small world networks (with property of small diameters) such that everyone can connect
to everyone else using a short path length motivates us to exploit the presence of this
rich user information set to build communication protocols based on trust and reputation
of the users and are robust and secure in nature. In this paper, we present an architecture
that attempts to leverage the rich user set represented in the form of social graph to build
communication protocols. Our architecture thus attempts to bring the ‘social context’ in
message exchange. The system uses the available OSN API’s to build the social graph
and facilitate the introduction of social context in the communication layer. So far, a
friendship, from the OSN’s perspective, has been binary. Two users either are friends,
or they are not. However, we hope to present a better model of friendship by realizing
that not all friendships are equal. This distinguishes DSL from a normal online social
network. It is common for users to trust some friends better than others. Therefore, our
DSL architecture captures, analyzes, and presents this information using a robust and
easy to use API.

The DSL kernel architecture we have designed and implemented gives standard ap-
plications the ability to leverage social network data without requiring the user of the
application to access his or her social network site. The only extra step the user needs to
handle is authentication to the network. Our architecture also attempts to require little to
no modification on pre-existing applications that wish to leverage social network data.
Another feature of our architecture is that the application does not break when a social
network changes its web layout which is a problem when having a bot crawl web pages
for data.

To establish the effectiveness of the architecture, we are currently building an appli-
cation which uses a Thunderbird or Outlook Express client to send an email using a
social path. The social path is computed using the connectivity information imported
from an OSN (we currently use Facebook). In this paper, we will delve into how our
architecture builds off of DSL to allow software developers unprecedented access to the
rich social graphs to add an element of trust and reputation in user-to-user interactions.
Furthermore, we will explain how our robust and flexible design allows developers to
modify their existing applications with very little effort. By giving some background
on DSL in section 2, we can present our architecture in section 3. Next, in section 4,
we examine some ways that our architecture can improve on currently existing com-
munication paradigms by examining the modifications we have made to email. We

Design and Implementation of Davis Social Links OSN Kernel 529

further explain the status of our project and some performance data in section 5. We
then compare our work with some related work in section 6 and we conclude our pa-
per in section 7 while also examining some of the current shortcomings and potential
research areas opened up by our architecture.

2 Overview of Davis Social Links (DSL)

Since our system utilizes the DSL protocol, it would be useful to first give a quick
summary of DSL and how it aims to reduce spam while increasing connectivity amongst
its users. To better understand how DSL and our OSN kernel work as well as why we
believe it is effective, we will reference an example: Consider the simplest form of
communication. Alice wants to send Bob an email. However, Alice does not know
Bob’s email address nor does she know him well enough to ask him using a different
medium. With DSL, she can rely on her network of friends to help find and convey
her message to him through a system where he can quantify her trustworthiness. In
our example, Alice is friends with Carol, who in turn is friends with Bob. Ignoring the
decimal values for each friendship link, refer to the figure below:

Fig. 1. An example social graph

2.1 Social Routing

We see that in the human society, people can communicate with each other if they can
develop a social route amongst themselves. While Alice does not know Bob well, Alice
can depend on her friends, namely Carol, to introduce her to Bob. As a result, many
of Alice and Bob’s initial social interactions are founded on the reputation of their mu-
tual friend. If Alice turns out to be a scammer, then Bob is less likely to trust Carol
in the future. On the other hand, if Alice and Bob get along very well, they are both
more likely to trust Carol. In the digital world, the current internet model uses routable
identities (e.g. email address) as the mechanism for people to interact. Unfortunately,
these routable identities are also used by spammers to send unwanted messages with
little fear of repercussion. The DSL model of a community based social network model
tries to incorporate human behavior of using social routes for message transmission.
Here, we use online social networks to define friendship, which can grow stronger or
weaker as various users interact with each other. In other words, DSL reaps the benefits
of ‘social context’ existing in OSNs to build communication protocols with reduced
spam and higher controllability to message receivers. Each user (or node in the social

530 T. Tran et al.

graph) sets up Profile Attributes (PAtt) [1] which are then propagated in the network to
allow other people to contact them. Each Profile Attribute k (for node v) is propagated
to other users according to the policy associated with it:

∀k ∈ KPAtt
v , ∃Policy(k) = [D, T, C]

Keywords received from other nodes are termed as Friendly Attributes (FAtt). Only
those nodes can contact v with the keyword k which satisfy the above policy i.e., the
node must be within D hops, all the links on the social path must have the minimum
trust level T and all the nodes on the path must have all the keywords in C in their
profile attributes. Thus, the receiver gets a large amount of control on who can contact
him/her. The keywords help a node to route messages by deciding the next node in the
social path. Previous researches like [2] [3] [4] have also used profile information to
route messages or search queries in small world networks. In DSL, the information that
nodes use to route messages are based on the keywords that they have. Thus, keywords
serve as lose identities for nodes in place of global identifiers. In the following section
we discuss the trust model.

2.2 Trust Management

DSL utilizes KarmaNet to manage trust so that bad nodes are removed from the network
and good nodes’ communication are not affected by bad nodes. In KarmaNet [5], bad
nodes are nodes who either send unwanted messages or those who utilizes network re-
sources but do not contribute to the network. Good interaction result will be propagated
from destination to source and the nodes on the social route will be rewarded up to the
sender. Bad interaction result will cause the social path to be punished from destina-
tion to source. If a social link is below a certain threshold, the message sent along that
link maybe dropped with probability proportional to trust. In Fig. 1, we show values
marking how much each person trusts the previous hop. For example, Carol completely
trusts Alice and therefore Alice’s trustworthiness, as judged by Carol, is 1.00. On the
other hand, Carol is not very well trusted by Bob and her trustworthiness is only 0.40.
Note that each person in the relationship may judge the other differently. In this in-
stance, while Carol completely trusts Alice, Alice may not reciprocate. In fact, Carol’s
trustworthiness, as judged by Alice, may only be 0.30, for example.

KarmaNet is a fully distributed trust management protocol which can be used both
in centralized and decentralized system. Therefore we use it for manage the trust of our
system.

3 Companion Architecture

The purpose of the architecture is to provide an easy way for many applications to gain
meaningful social context. By leveraging this data, applications such as email, Skype,
online search, and multiplayer gaming can benefit by adding trust and route discovery to
the system. We have purposefully designed our architecture in order to minimize changes
to any third party application source code, especially at the client side. For example, we
have successfully implemented a DSL-compatible version of email that only requires

Design and Implementation of Davis Social Links OSN Kernel 531

changing the SMTP server but not the client-side email application. This flexibility al-
lows developers to add DSL functionality without forcing their clients to update any-
thing. In fact, it is possible that the end users may not have to change anything at all. In
this section, we will describe the system and how it’s architecture facilitates this:

All applications that wish to take advantage of our architecture must have a way
to remotely communicate with the architecture. If the application cannot communicate
remotely, then a plug-in must be written for it or the source code must be modified and
recompiled. Remember, we want to only perform minimal or no changes on pre-existing
applications. So our architecture only requires that the user change which SMTP server
she will be sending the email too. The SMTP server that the user is sending her email
to will be the server that is connected to the underlying architecture, diagramed below,
that allows social network data to be used for the application.

Fig. 2. Davis Social Links Architecture

3.1 Request Receiver

Once a user sends an email, our architecture’s request receiver, or the SMTP server in
this case, receives the email. The role of the request receiver is essentially to sit and

532 T. Tran et al.

wait for data from the user. The request receiver will typically expect some form of
content and the necessary identification which varies between applications. In this case,
the request receiver is an SMTP server that waits for the sender and receiver email
addresses as well as the email content. Once the request receiver receives data, it then
sends the data to the next component of the architecture, the translator.

Returning to our old example, let us say that Alice is using Thunderbird and wants
to send an email to Bob along a social path. She first must configure Thunderbird and
change the SMTP server address to the address of the SMTP server inside our architec-
ture. This SMTP server is the request receiver of our architecture. Sendmail is setup on
the SMTP server to run all email through a milter. This milter is a program that is given
every email that Sendmail receives. The milter extracts the source and destination email
addresses as well as the content.

3.2 Social Translator

The social translator is an application specific module that translates between the IDs
provided by the user (in this case, the sender’s and the recipient’s email addresses) to
the corresponding social network ID. If the application cannot provide a global unique
ID, then it is impossible for the translator to perform any lookup. As a result, our ar-
chitecture cannot be used if global unique IDs cannot be provided by the application.
After translating the IDs to the corresponding social IDs, the translator then returns the
social IDs for the sender and recipient to our request receiver, which sends the IDs and
the message content to the Query Manager.

3.3 Query Manager

The QM’s purpose is to retrieve the social network data requested as well as provide
the data back to the application requesting the data. When the QM receives the email
content as well as the social network IDs, it queries the social router. The QM can either
request the optimal social path or a set of paths so that the user can choose the one he
prefers. Once the QM receives the social paths between the two users from the DSL
layer, it has to perform some action with the social network data. One option would
be to allow the user to choose the path he prefers the message to take, although in the
interest of making DSL unintrusive, the Query Manager can simply choose a best path
according to some preset conditions.

In our email implementation, a user such as Alice can choose a path before actually
sending the message. Giving Alice an interface to choose a social path can be accom-
plished in many ways. We chose to create a web interface via a Facebook application.
In this interface, Alice can view all ”send pending” message and choose a path to send
the email along to Bob. We realize this would be a tedious process to do for each email
a user wanted to send. Thus, we have added configurability options. Alice can choose
to always send a message through a certain path (for emails sent to Bob after the ini-
tial one) thus eliminating the need to deal with the interface every time she wants to

Design and Implementation of Davis Social Links OSN Kernel 533

send an email to Bob. Once Alice chooses a path, the email will be marked as sent.
Alternatively, Alice can simply allow the OSN kernel to choose a path for her.

3.4 Social Router

Given the user’s ID and the intended destination ID, the social router will attempt to
either find an optimal path between them using the decentralized algorithm [5] or return
a set of routes for the user to choose from. If the router is successful, it will return the
path(s) along with the likelihood that the message will be delivered successfully (which
is a function of the trust between the nodes in the path(s)). If no path from the sender
and the recipient can be found, the social router returns an error. Alice, according to
her relationships, will discover that the path to Bob through Carol is her best bet on
reaching Bob.

Once a social path has been selected, the router will examine each link along the
path. If the trust value, τ of any link is less than a preset threshold, then the router will
randomly drop the message at that link with probability equal to 1 − τ . This is done as
punishment to weaker links since social links who’s trust value is below the threshold
are deemed untrustworthy and may be connected to a malicious user. The social router
will then inform the query manager of it’s decision and the query manager can then
send out the email or drop it accordingly.

If the message is dropped, then the social router will automatically update the trust
values along the path, punishing the nodes and the sender. Otherwise, if the message
reaches it’s destination, then the social router will also update the trust values along the
path, rewarding all nodes along the path for delivering the message successfully.

3.5 Policy Module

The policy module is an optional module that can be utilized for path discovery. The
policy module allows users to find recipients based on keywords, as discussed in the
DSL paper. The user application provides the policy module with a list of keywords
along with the sender’s ID and the policy module will return a list of potential recipients
that also have the keyword along with a few other contraining characteristics.

3.6 The Recipient’s Experience

The receiver, Bob, can also use a web interface to choose whether he will accept the
email or not. Bob is shown who the sender is (Alice) and which path (including trust
values) she chose to send the email along. However, Bob is not shown the content of the
email. If Bob rejects the email, then the application makes a request to the DSL layer to
penalize the social path. On the other hand, Bob can accept the message. If Bob does so,
the email is then sent via SMTP to Bob’s inbox where he can open up Thunderbird to
view it. Bob also has the same configurability options that Alice did, but for receiving.
He can always choose to accept a message from Alice along a certain social path or any
path. Bob still has an opportunity to penalize the path after receiving the email to his
inbox if the content of the email is considered spam.

534 T. Tran et al.

4 Extended Features

In addition to creating a social context for messaging, we have redesigned a few key
concepts in messaging by incorporating our DSL system to increase controllability of
the reply, reply-all, and forwarding functions.

4.1 Reply

Currently, replying to an email simply means that the user sends the original sender an
email with the body included for reference. At the system level, there is no clear dis-
tinction between a reply and a new email. In our system, we have decided to implement
our own reply functionality in order to incorporate social context along with recipient
controllability. Due to the nature of keyword routing, the recipient of a message may
or may not know what keyword to use in order to send a message back to the original
sender. Furthermore, it may be impossible to actually find a social path if the original
sender set up his keywords to be restrictive. Returning to the Alice and Bob example,
even though Alice can find a path to Bob using keyword Ka, there is no guarentee that
Bob can send a message back using the same keyword. In fact, it is possible that there
is no such keyword which could allow Bob to communicate to Alice. This seemed to
be a crucial feature in communication and we could not consider our architecture to be
complete without it. As a result, we have implemented a system-level version of the
reply functionality.

Fig. 3. (a) Alice finds and communicates to Bob using keyword Ka. (b) However, Bob will have
trouble responding to Alice if he cannot find a keyword that will return a path to Alice.

When Alice is composing her message, she is given the option of granting reply
tokens to her recipient, Bob. Each token allows Bob to reply to Alice once through the
social path that Alice used to reach Bob. As a result, Bob does not have to find a social
path on his own. After Bob has used up all the reply tokens, if he wishes to contact
Alice again, he must find a new social path. By restricting the number of reply tokens
granted, Alice can prevent Bob from spamming her.

If, between Alice sending the message and Bob replying, a user along the social path
removes himself from DSL, then Bob will simply get a ”path not found” error message
and will then have to search for a new path.

4.2 Reply-All

Similar to reply, we have implemented reply-all functionality using tokens. When a user
(let us use Alice again for this example) wants to send a message to multiple users, she

Design and Implementation of Davis Social Links OSN Kernel 535

can grant a number of reply-all tokens (in addition to reply-tokens). Note that if Alice
grants x tokens, then each recipient will receive x tokens. If Bob is a recipient of her
message and wishes to respond back to everyone, he can use up one of his tokens. Bob’s
message then travels back to Alice, where it is automatically sent by Alice to all of the
original recipients. If one of the recipients decides that Bob’s message is spam, DSL
punishes the social path from this recipient to Alice and also the path from Alice back
to Bob.

Fig. 4. (a) Alice sends a message to multiple recipients. (b) Bob wishes to reply to all the recipi-
ents, which he does so by first sending the message to Alice and having her forward the message
to everyone else.

We are currently considering the situation in which one node is part of the path from
Alice to Bob along with being part of the path from Alice to some other recipient. If Bob
does a reply all, this node will be affected twice. For example, if the recipient marks
Bob’s message as spam, the node will be punished as the outcome traverses from the
recipient to Alice and again when the outcome traverses from Alice to Bob. Similarly,
the node can be rewarded twice if the message is marked as being good.

4.3 Forward

Let’s assume that Alice and Bob are professors at a university. Alice is going to be giving
a presentation on a subject that she thinks Bob’s students may be interested in hearing.
Alice then sends a message to Bob asking him to forward the message to his students
on her behalf. We assume that Alice does not know who all of Bob’s students are and
therefore are unable to contact them directly. Alice, when composing the email, has the
option of granting Bob a forward token, which means that Alice is willing to accept
some of the risks that Bob would take by forwarding the message. As a result, if Bob’s
students decide that the message is spam, Alice would receive some of the punishment,
as would Bob. Similarly, if the students really liked the notice about the talk, both Alice
and Bob would be rewarded. We have designed a prototype of the forward functionality
and we are currently experimenting with how much punishment or reward Alice and
Bob should each receive.

One important thing we want Alice to be able to control is the integrity of the mes-
sage. While Alice most likely trusts Bob, since Alice’s reputation can be adversely
affected if Bob makes bad changes to the message, we are currently preventing the re-
cipient from modifying the body of the original message before forwarding it. They are,
however, allowed to add a new note intended for recipients of the forwarded message.

536 T. Tran et al.

Another situation that we are currently experimenting with is if Alice knew exactly
who the forwarded message’s recipient is. For example, let us assume that Alice wishes
to send her resume and job application to a hiring manager but she knows that her
application would receive more weight if it was forwarded by her friend Eve, who
knows the hiring manager very well. We are currently testing out a system where Alice
can specify the final recipient (the hiring manager) and Eve will automatically forward
the message to the hiring manager. As a result, DSL will find a path from Alice to Eve
and then from Eve to the hiring manager.

There are some challenges we need to solve for this to be successful, however. While
having the message be automatically forwarded makes things much easier for Eve, Eve
is not able to add a personal note before the message is forwarded to the hiring manager.

4.4 Other Application Support

Email works quite well with our architecture. However, the question is how well are
other applications supported with our architecture? The main requirement our archi-
tecture has for applications is that they must have globally unique IDs within the ap-
plication’s scope. The relationship between the application’s IDs and the underlying
OSN’s IDs is crucial. Without these application IDs, it is nearly impossible to obtain a
user’s social network information since the kernel cannot translate between the two sets
of IDs. In this subsection we will examine how authentication at the application level
affects the effectiveness of our OSN kernel architecture.

Another type of communication besides email is Skype[6], which allows users to
make telephone calls over the internet. While Skype users do have global unique IDs,
they’re encrypted and cannot be easily obtained by the user or the architecture. Though
it may seem it would be impossible for Skype to work well with the architecture, there
is a solution that satisfies the architecture’s requirement. The solution involves Skype
creating a server that acts as the middleman in the communication between the user and
architecture. The user can choose to notify the Skype servers that the user wishes to uti-
lize the architecture which will have Skype decrypt the IDs and send them over to the
architecture. This would allow an application ID to social network ID translation. After
this, Skype’s usage of the architecture can be similar to what we have done with email.

A unique way to utilize the architecture for non-communication purposes would be
to associate search words in Google with friends. The idea is that when the user submits
a search query, the architecture can find out what friends are associated with particular
words in the search terms. The user can simply be presented with what friends are asso-
ciated with what words in the search terms as a result. On the other hand, an interesting
use would be utilizing the friends associated with the search terms to influence Google’s
search results. How much influence a friend has on the search terms could be fine tuned
by the user.

5 Status

Currently, we have adapted email to work with our companion architecture as a proof
of concept. To analyze it’s performance, we assume that the cost of the sender sending
the email to the architecture and the architecture sending the email to the receiver is

Design and Implementation of Davis Social Links OSN Kernel 537

Fig. 5. A high level overview of the architecture. (a) First email sent to DSL. (b) DSL processes
the email. (c) DSL sends email to receiver. (d) The original path email follows without DSL.

double the cost of sending email regularly. Thus, we only measure the overhead of
the architecture processing. Utilizing the architecture for email can sometimes require
human interaction as previously outlined. We chose to measure the scenarios that don’t
require human interaction. In these scenarios, the emails match some criteria (default
path, trust threshold) that allows the emails to simply be sent to the receiver without the
need for the receiver or sender to select any options for the message.

The process of sending a message through our system can be broken up into 3 parts.
The first part is when the sender sends the email to the supporting architecture. The next
part is the architecture applying the required work on the message prior to actually send-
ing out the message to the receiver. The final part is sending the message to the receiver.
For this analysis, we assume that the cost of the sender sending the email to the architec-
ture and the architecture sending the email to the receiver is double the cost of sending
email regularly. Thus, we only measure the overhead of the architecture processing.

Our tests were ran on a system with an Intel Xeon E5345 (2.33GHz) processor with
8GB of RAM. We measured the overhead that would be presented by the extra architec-
ture processing for 1,000, 10,000, and 100,000 consecutive emails. We ran three tests
to confirm that our results could converge to a similar result. Each message was 1000
characters long. Processing each of the 1,000 emails was executed on a single thread
and the processing of the next email would only start after the current email finished.
The overhead per email in all of those scenarios converges to approximately .00212
seconds. The overhead is quite small in our implementation that still has room for code
optimization. We can conclude that the overhead required for our architecture is small
enough to warrant the benefits of utilizing the architecture.

6 Related Work

Some work has been done on utilizing social networks in email systems, such as Trust-
Mail [7] and RE [8]. Given a sender and a recipient, TrustMail finds a social path be-
tween them and further computes a trust score for the sender, thus the recipient can

538 T. Tran et al.

decide whether to accept the emails from the sender. Different recipients may get dif-
ferent trust scores for the same sender, according to the social paths between them. RE
allows users to propagate their whitelists on the social network such that a recipient
can decide whether to whitelist a sender based on the social relationship between the
recipient and the users who have whitelisted the sender. These work couples their appli-
cations with social networks tightly and describes briefly how applications and social
networks interact, while in this paper, we dedicate a separate layer for general applica-
tions and discuss in detail how to implement such interfaces. We believe that with DSL
architecture, it will be easier to build new applications or connect existing applications
to social networks.

There is also effort to consolidate existing social networks from industry. Notable ex-
amples include OpenID and OpenSocial. Developed by Google along with a number of
social networks, OpenSocial provides a set of common APIs for social network appli-
cations, which can serve as the communication layer between DSL and existing social
networks. OpenSocial, however, does not provide the high level features proposed in
DSL such as reputation systems and social routing. Industry may have developed simi-
lar ideas as DSL internally, such as some social network projects presented in Microsoft
Research TechFest 2009, while to our best knowledge, no details has been published.
Presenting DSL architecture here, we wish this paper may initiate further discussions
in software system level on how to connect existing social networks to future OSN
applications.

7 Conclusion and Future Work

There are three sets of standard applications that we have to accommodate with the
architecture. The first is applications that have already been written that dont allow
plug-ins to be written for them. These applications are clearly the toughest to satisfy as
we have to find ways for them to communicate remotely with a system they were never
designed to communicate with. Beyond modifying the source code, we believe there
isnt much room for improvement for our architecture to support this set of applications.

On the other hand, the set of applications that support plug-ins can typically be pro-
grammed to remotely communicate with any system the programmer desires. Similarly,
the third set of applications being applications written from scratch can always be pro-
grammed to remotely communicate with any system. Thus, we hope to develop another
API layer above the whole architecture presented in this paper to support these two sets
of applications. With this API, the architecture is completely hidden from the application
as the developer (with sufficient permissions) can read and write data through the API.

Acknowledgements

We would first like to thank Ken Gribble for his tireless help with setting up the milter
and configuring it to our specificiations. We would also like to thank Juan Lang, Lerone
Banks, and Matthew Spears for their help and guidance on this paper. This research
is funded in part by National Science Foundation under CNS-0832202, Intel, and an
MURI grant from Army Research Office under the ARSENAL project and we would
like to thank them for continued support.

Design and Implementation of Davis Social Links OSN Kernel 539

References

1. Banks, L., Bhattacharyya, P., Wu, S.F.: Davis social links: A social network based approach
to future internet routing. In: FIST 2009: The Workshop on Trust and Security in the Future
Internet (July 2009)

2. Kleinberg, J.: The small-world phenomenon: An algorithm perspective. In: STOC 2000: Pro-
ceedings of the 32nd annual ACM symposium on Theory of computing, pp. 163–170. ACM,
New York (2000)

3. Milgram, S.: The small world problem. Psychology Today 61, 60–67 (1967)
4. Sandberg, O.: The Structure and Dynamics of Navigable Networks. PhD thesis, Chalmers

University (2007)
5. Spear, M., Lang, J., Lu, X., Wu, S.F., Matloff, N.: KarmaNet: Using social behavior to reduce

malicious activity in networks (2008),
http://www.cs.ucdavis.edu/research/tech-reports/2008/
CSE-2008-2.pdf

6. OpenSocial, http://www.skype.com/
7. Golbeck, J., Hendler, J.: Reputation network analysis for email filtering. In: Proceedings of

the 1st Conference on Email and Anti-Spam (CEAS) (2004)
8. Garriss, S., Kaminsky, M., Freedman, M.J., Karp, B., Mazieres, D., Yu, H.: Re: Reliable email.

In: Proceedings of the 3rd Symposium on Networked Systems Design and Implementation
(NSDI), pp. 297–310 (2006)

http://www.cs.ucdavis.edu/research/tech-reports/2008/CSE-2008-2.pdf
http://www.cs.ucdavis.edu/research/tech-reports/2008/CSE-2008-2.pdf
http://www.skype.com/

540 T. Tran et al.

Appendix: Screenshot of the Application

Fig. 6. A user’s pending inbox and outbox. Here, the user can manage messages to be sent out
along with ones that they are about to receive.

	Design and Implementation of Davis Social Links OSN Kernel
	Introduction and Motivation
	Overview of Davis Social Links (DSL)
	Social Routing
	Trust Management

	Companion Architecture
	Request Receiver
	Social Translator
	Query Manager
	Social Router
	Policy Module
	The Recipient's Experience

	Extended Features
	Reply
	Reply-All
	Forward
	Other Application Support

	Status
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

