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Abstract—Scalability issues make it time-consuming to esti-
mate even simple characteristics of large scale, online networks,
and the constantly evolving qualities of these networks make it
challenging to capture a representative picture of a particular
networks properties. Here we focus on the evolution of all triads
(ties between three nodes) in a graph, as a method of studying
change over time in large scale, online social networks. For three
month snapshots, we examine, and predict, transitions among
all sixteen triad types (i.e., triad census) in a sample of three
years of Facebook wall-post interactions. We introduce a new
sampling approach for examining triads in online graphs, based
on ego-centric networks of random seeds. We examine tendencies
in the data toward properties related to balance theory, including
structural balance, clusterability, ranked clusters, transitivity,
hierarchical clusters, and the presence of “forbidden” triads. In
a time series analysis, we successfully predict the evolution over
time in the wall post network dataset, with relatively low levels
of error. The findings demonstrate the utility of our ego- centric,
two-step, random seed sampling approach for studying large scale
networks and predicting macroscopic graph properties, as well
as the advantages of examining transitions in the complete triad
census for an online network.

I. INTRODUCTION

Online social networks have grown enormously over the

past decades. Networks have increased both in the number of

users present on the networking platform as well as in the

number of connections between existing users. The enormous

size and the dynamic characteristics of online social networks

have created challenging problems in network analysis. Issues

related to size make it time-consuming to estimate even simple

graph characteristics, and the constantly evolving qualities of

online networks make it problematic to capture a representa-

tive picture of a particular network’s properties.

Network analysts identify at least 800 distinct metrics [1]

that can be used to represent the global properties of networks,

among which structural balance, clustering, ranked clusters

and transitivity are particularly important. These properties can

be extracted through either a macroscopic or a microscopic

approach. The primary difference between the two approaches

lies in scale. A macroscopic approach involves an analysis at

a high level of theoretical abstraction, while a microscopic

approach focuses on the individual level. In the analysis of

large scale online social networks, macroscopic approaches

often involve complex computation characteristics, requiring

large amounts of memory and time. In contrast, microscopic

approaches are inexpensive and time-efficient.

One primary microscopic approach to the analysis of a

network is to examine the composition of its component triads.

A network triad is defined as the collection of three actors,

ni, nj and nk, where i �= j �= k. Sixteen different triads can

be formed among the three actors based on the direction of

connection or interaction. A count of each different type of

triad that arises in an observed network is defined as a triad

census. A triad census can uncover global properties of the

network, as will be discussed below [1].

The purpose of this paper, therefore, is to analyze online

social network properties using a microscopic approach in

which we focus on the evolution of triads. Our contributions

can be summarized as follows. We perform a large scale

study on Facebook wall-post interaction of 13, 922 users and

121, 941 interactions. We observe the transitions in triad types

over time and the key global properties of the network.

Additionally, we perform time series analysis to successfully

predict network evolution and growth of each triad type over

multiple time-stamps. The rest of the paper is organized as

follows. In section II, we discuss related work in the areas

of network growth modeling. Next we describe our approach

to examine changes in triads over time in section III. We

then present results from our measurement and analysis of

the Facebook data in section IV. Finally we make concluding

and suggesting for future work in sectionV.

II. RELATED WORKS

An analysis of triadic patterns represents a powerful tool

for extracting global graph properties. Studies of triads date

back to Simmel where he observed the fundamental properties

of three actors rather than two within a network. He pointed

out the possible role of the third person in interactions such

as mediation and brokerage [2].
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Heider’s balance theory maintains that particular configura-

tions of three persons tend toward balance and stability over

time, whereas others are imbalanced, stressful, and unstable

[3]. A number of theorists have developed variations of

balance theory, with transitivity representing one of the most

widely used extensions.

In our approach, we examine triads and their evolution over

time in an online social network in order to extract certain

macroscopic network properties and to make predictions about

the subsequent state of the network. Examining the growth

of social networks over time has emerged as a challenging

problem in the study of social networks. Parameters such as

the degree distribution, diameter, and the clustering coefficient

are typical metrics obtained in these analyses [5]–[11].

Research in this area can be primarily divided into multiple

categories [4]. In the first type, the arrival of new nodes

and models of node engagement are used as the basis for

analysis. Formally, this method is known as stream mining

[5]. In the second category of research, referred to as mining

static data, the primary focus is on obtaining the macroscopic

statistical properties of the network. In our studies, we focus

on microscopic evolution within local groups.

Leskovec et. al [5] had a detailed study on changes in

microscopic node behaviours. Their main focus was on node

arrival and the edge initiation process as well as edge des-

tination selection. They found that most edge formation is

local and proceeds in the transitivity direction of triangle

closure. They validated preferential attachment in the large

scale networks and modelled node arrival and edge formation

based on different statistical functions and triangle closure.

Most functions are based on degree, common friends and the

last time of activities. In another study by Golder and Yardi

[12] a network’s tendency toward mutuality and transitivity

were observed examining several possible triads’ configu-

rations. What makes our approach different from that of

previous research is that here we examine all possible triads,

as subgroups of three people, and we do not restrict our ob-

servation to closing triangles only. In other words, we observe

all different configurations of three nodes in the network.

In addition, instead of trying to describe and reproduce the

network through statistical functions, we monitor the flow of

the networks triads and use these analyses to describe aspects

of global network properties. Local and global predictions are

provided based on the observed evolution of triads in the data.

III. STRUCTURAL BALANCE THEORY AND TRIADS

The triad census has been used in many sociological em-

pirical investigations and social psychological theories, such

as balance and transitivity [13]. Heider’s balance theory [3],

later generalized as structural balance, proposes that people

tend to maintain consistency or balance in their cognitions, for

example they will like friends of their friends. Balance theory

is usually applied to signed complete networks. However, any

unsigned network can be mapped easily to a complete signed

one by assuming present edges as positive and absent edges

Fig. 1: The triad isomorphism classes (M-A-N labelling) [18]

as negative. Several variations of balance theory have been

developed, such as those of ranked clusters and transitivity.

Local groups of three users and the ties between them define

triads. Figure 1 shows sixteen isomorphism classes for the

sixty-four different triad states. What makes triads special to

study is their ability to link local characteristic to global prop-

erties. Empirical and mathematical studies show that global

network properties can be derived through information in a

triad census [14]–[17]. In other words, instead of observing

the whole network in order to derive global properties, it

is sufficient to focus only on groups of three. According to

the classic labelling scheme M-A-N, each triad type has a

label with at most four characters, the number of mutual,

asymmetric and null dyads. The fourth character, if present, is

used to distinguish further among types. “D” for Down; “U”

for up; “T” for transitive; “C” for cyclic.

For the network of size n there will be
(
n
3

)
different triads.

The triad census consists of a frequency distribution for the 16

isomorphism triad configurations. the triad census is presented

in the format of a vector of length 16, mainly called T . In our

method, we use random samples to estimate the census. The

estimated vector is usually referred to T ′u. In section IV we

show T ′ is enough for extracting network properties and also

for the estimation of actual T .

A. Triad Census and Theories of Balance and Transitivity

A triad census can be used to infer graph properties

such as structural balance, clusterability, ranked clusters, and

transitivity. In a triad census, different distributions of triad

categories represent various theoretical models. There are five

main models which can be inferred based on the triad census.

The first model is balance, which consists only of triads 102,

and 300. This model only allows for symmetric ties within

a cluster and no ties between them, and only allows for at
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most two clusters within a group of three nodes. Also it

does not allow any ties between ranks. The next model is

clusterability, where triads 102, 300 and 003 are permitted. It

has the same properties as the balance model, but it does not

have a restriction on the maximum number of clusters. The

ranked cluster model is the third model, and it has the same

definition as the previous model, but the extra assumption that

it allows for asymmetric ties from each vertex to all vertices

on higher ranks. It will permit triad types 102, 300, 003,

021D, 021U, 030T, 120D, 120U. The transitivity model relaxes

the assumption of null ties between ranks, which includes all

mentioned triads in the ranked clusters model beside triad type

012. Finally, hierarchical clusters is the most relaxed model,

and it allows for asymmetric ties within a cluster, provided that

they are acyclic. It includes all of the previously mentioned

triad types, as well as triad types 120C, 210.
The remaining five types of triads, 021C, 111D, 111U,

030C, 201, are not encompassed under any of the models.

They are called “forbidden” triads since they contradict all

of the five, balance theoretic models. They also violate as-

sumptions regarding symmetry of dyads, on which the overall

models are based. If these types of forbidden triads occur

frequently, they put into question the assumptions of balance

incorporated into the above theoretical, social network models.

T EF T EF T EF T EF
1 N3 5 3

4
NA2 9 3

4
A3 13 3

4
MA2

2 3AN2 6 3
2
NA2 10 1

4
A3 14 3

2
MA2

3 3MN2 7 3MAN 11 3NM2 15 3AM2

4 3
4
NA2 8 3MAN 12 3

4
MA2 16 M3

TABLE I: Expected Frequency under M-A-N labelling

Triad’s Type(T), Expected Frequency(EF)

Social networks are noisy and rarely represent perfect

balance in empirical data. Moreover, it is not the presence

of particular triads which define network properties, but their

distance from a distribution in a random network with the

same number of nodes and links. Table I shows formulas to

compute the expected triad types in a random network [19],

[20]. Notations are the same as the MAN labelling where M

represents the number of mutual dyads, A the number of asym-

metric, and N the nulls dyads, where M+A+N = n(n−1)
2 and

zk = z(z−1) · · · (z−k+1). When there is a large discrepancy

between the actual number of triads and that expected by

chance, a tendency toward a specific model can be assumed.

In particular, if the various models of balance help to explain

a network’s structure, then the forbidden triads should occur

less frequently than expected by chance [18], [21].

B. The evolution of a triad census

Any snapshot of a social network is likely to consist of two

genres of triads, those that have already reached stability, or

a state of equilibrium, and those that are in transition, and

progressing towards a more stable state. Although a triad cen-

sus is a strong tool for revealing network properties, it cannot

Fig. 2: Triads’ evolution within one step

detect all possible hidden tendencies. By relying only on a

triad census, we may not be able to capture deep tendencies

toward change. For example, a semi balanced network with a

very low level of change could have the same triad census as

a highly changing network that consists of many new arriving

nodes and ties that are on their way to stability. In a highly

evolving network, stability may not occur, simply because not

enough time has passed for all triads. This claim is analogous

to the problem in statistics referred to as right-censoring, or

censor Type l. In order to overcome this disadvantage, here

we observed the evolution of triads in a situation in which

we could monitor the probability of changes between types.

With the emergence of new ties, a triad’s status changes. The

probability of inter state changes could reveal a lot about

network’s properties. For example, two different networks with

the same triad census could act differently during the time, and

what makes them different is not their triad census at a certain

snapshot, but probabilities of staying in one state or moving

forward. Figure 2 and 3 shows the possible evolution of triads

in one or multiple steps.

Note that if a particular triad changes by adding or deleting

one tie at a time, then it is inevitable that some triads will

pass through a forbidden state in order to reach a more

stable state. Yet we would expect the transition probabilities to

differ between forbidden and non forbidden triads. In previous

research, Sorensen and Hallinan [22] studied triad change

among a small, network of 28 students using a continuous time

discrete state markov chain model relying on the transitivity

model. They found that there was a tendency towards more

density of ties, with a gradual decrease in triads of types 003

and 012, and an increase in triad type 300.

C. Dataset

To investigate triad evolution and its ability to extract net-

work characteristics, we rely on a Facebook dataset consisting

of wall posts. The data set was gathered by Viswanath et. al.

[23] and related to 13,922 users and spans interactions from

September 2004 to January 2009. We use the network’s status

at timestamp July 2007 as a basic configuration of the network.

It consists of more than 13,922 nodes and 121,941 interactions.

We divided the rest of the dataset into 6 different intervals so

that we could observe microscopic changes within the network
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between these snapshots, each of which consists of ties that

occurred within three months.

D. Notation

Networks are mainly represented by a graph G = (V,E) in

which each edge e = (u, v) ∈ E represents a social interaction

between u and v that took place at a particular time t(e). In

the dataset we use, e = (u, v) represents a situation in which

the second user v , posted on the first user’s wall, u. G[t, t′]
denotes the sub-graph of G which consist of all the interactions

in which the timestamp is greater than t and smaller than

t′. Besides the basic configuration of the network, G[t0, t0
′],

we divide the social graph into 6 different time intervals,

as ti < ti
′ and ti

′ < ti+1 for i = 0, · · · , 6. We examine

the network’s characteristics from G[t0, t0
′] to G[t4, t4

′] and

then use this information to attempt to predict the network

properties and status at G[t5, t5
′] and G[t6, t6

′]. In learning

language [t0, t0′] to [t4, t4′] are known as training intervals

while [t5, t5
′] and [t6, t6

′] are known as the test intervals. Our

focus is on predicting T ′5 and T ′6 based on T ′0 to T ′4.

We attempt to predict the actual T s with network’s ego-

centric information. Such a prediction task is important,

because by having an accurate estimation of vector T, we

will be able to compute and compare the estimation of the

actual number of each triad type with the expected frequency.

Furthermore, we can examine the network’s overall tendency

towards a particular type of balance model. Such an approach

is especially useful in cases in which the network is either

very large or it is subject to substantial change, both of which

are common in online social networks.

In most social networks we have mainly two different

types of growth, growth in edges and growth in nodes. The

former happens as a result of new interaction formation within

the network, while the latter is the result of new actors

joining the network. In this study we only focus on growth

in density, which is the formation of new interactions. Hence,

we omit new nodes that join the network following the base

configuration. In other words we examine ties among the same

set of nodes in all subgraphs Gi for i = 1 · · · 6 as those we

have in G0; by Gi we mean G[ti, ti
′].

E. Ego-Centric Random Selection

The number of possible triads in a typical, online network

can be extremely large. As a result, observing the evolution

over time of all possible triads in an online network is

inefficient and cumbersome. It is inefficient, because often a

very large proportion of triads consist of type 1-003, that is

all null dyads, and they will stay there forever. For example

in our data set there are 44 × 1010 triads of which 0.998%
are triad type 003, null in time t0

′ . Out of this number,

only 50 × 107 triads move forward out of the null stage,

which represents less than 0.01% of all the null triads in the

base configuration.Therefore, observing all possible triads in

a sparse environment, such as a Facebook wallpost network,

is inefficient. To overcome this limitation here we introduced

a new, more efficient method of observing a triad census, one

that is based on ego-centric networks of random seeds, which

we describe in more detail below. Other options for analyzing

fewer triads could be selecting random sets of three nodes

(ni, nj , nk) from the network. This method is particularly

inefficient since the low density of large social networks will

still result in the selection of many null triads. The other trivial

option for omitting null triads could be to choose a random

edge eij and a random node nk that are not involved in the

edge k �= i and k �= j. Although much improvement is seen

in this approach over the random selection of nodes, it still

has substantial disadvantages, mainly because randomness in

the selection of nodes usually results in placing node nk many

hops away which will produce many triads of types 012 and

102 that consist of either only one asymmetric dyad, or one

mutual dyad without any progress forward. What makes the

ego-centric approach special is its particularly efficient way

of including those triads that have a relatively high chance of

becoming involved in some evolution over time.

Ego-centric random selection begins with a random selec-

tion of a particular number of nodes as seeds. Then each seed

is used as an ego, as a basis for the ego-centric, two-step

local network. The ego-centric network, ECN(ego), consist

of an ego and all nodes within two hops of it, using either in

or out links and all ties between them. A triad is formed by

observing all sets of (ego, ni, nj) where ni, nj ∈ ECN(ego).
Two nodes ni and nj could be as far as four hops from each

other, while both of them are at most two hops away from

ego. There are several advantages of observing triads within an

ego-centric network rather than a random selections of triads.

First, this approach enables us to eliminate a large portion

of null triads, type 003, in the social network. Instead, we

observe change only in those triads that have a greater chance

of being involved in a triad transition over time. Moreover,

an ego-centric approach is a practical way of identification

hidden tendencies within a network, such as tendencies toward

mutuality, transitivity or clusterability.

In our ego-centric approach toward triad selection we only

focus on
∑

ego

(|ECN(ego)|)
2

)
where by |ECN(ego)| we refer

to the size of an ego-centric network of node ego. We do

this instead of examining all possible triads in a graph
(
n
3

)
=

n(n−1)(n−2)
6 . Next we show that this is an efficient way of

capturing patterns of triad evolution in large graphs, and that

it also can be used as a good predictor of the triad census

associated with the entire graph and its future state.

IV. RESULTS

When allowing multiple movements over time, there are 105

possible transitions between different types of triads. These

possible transitions are depicted in the transition matrix in

Table ??. In our ego-centric approach toward the triad census,

we monitor all possible triads in 6 different snapshots. The

probability of a transition from triad type i to j is defined

by P k
ij =

Sk
ij

Sk
i

it could be computed through Sk
i =

∑
j S

k
ij

where Sk
ij represents the number of triads that move from

type i to type j at snapshot k where Sk
i represents the total
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Fig. 3: Possible interstate transition

number of triads of type i at the beginning of the snapshots.

The probabilities of diagonal elements depict the networks’

tendency toward staying in the same state rather than changing

over time. The higher the diagonal probabilities, the less

dynamic is the network. The more distant a triad has from

the diagonal, the greater the tendency it exhibits to change.

Table III shows the average probability of transition between

time stamps for our three different samples. For a large scale

social network with a low density we expect a very high

staying probability. As we see, the five forbidden triads (6, 7,

8, 10, and 11) are involved in a number of transitions. Passing

through forbidden triads as an interim stage is inevitable, if a

triad is evolving towards a stable state on a step by step basis.

However, the rate of staying in a forbidden state or moving

forward reveals a lot of information. Previous research on

the same dataset demonstrates that the waiting time is shorter

when a triad exits a forbidden or intransitive state than when it

moves out of a state that is transitive or not forbidden. In other

words, although forbidden triads occur with some frequency,

they tend to change relatively quickly [24].

A. Probability

P i
ij , the probability of change in triads in transition from

Gi to Gi+1 where i ∈ {0, 1, · · · 5} is shown in Table III.

The triad types, 1 (003) through 16 (300), are defined in

Table ??. This table only contains the probabilities for those

movements that had more than a 0.001% chance of change in

at least one transition in one of the three samples we used.

The rows in bold show the most probable type of move out

of each triad type i. For example, as can be seen in the first

six columns of Table III, the most frequent transition for a

triad consisting of one asymmetric tie (2-012), consisted of

a change to a triad with one mutual tie (3-102). The most

popular path of evolution for triads in our data set is toward the

following triads; 003 → 102 → 111D → 201 → 210 → 300.

Three of these six triads involve mutual dyads (either one,

two, or three), and therefore these findings show evidence

of movement towards mutuality. More generally, the results

depict that any step in movement towards increasing mutuality

is particularly likely. Next, we used linear regression to predict

the probability of a transition between snapshots 4 to 5 and

snapshots 5 to 6 based on the network’s behavior in the prior

transitions. The last column depicts the root-mean-squared

deviation, RMSD, which can be thought of as a measurement

of the size of the error in our predictions based on the

regression analysis. Note that the sizes of all the RMSDs

are quite small, and are all less than 0.13. In addition, all

but two of the possible transitions that originate with Triad

10-030C, are larger than 0.046. The relatively small overall

error rate demonstrates that we are able to predict the future

configuration of network, its tendency toward change and its

triadic configuration. In the next section we show how we

use these data to predict the triad census of the larger graph

and verify extensions of balance theory within the network by

observing a relatively few number of triads.

B. Census

As discussed above, a random ego-centric approach is a

relatively efficient way of monitoring the evolution of triads

in a network. Not only is it successful in reflecting both

macroscopic characteristics of the network, as well as mi-

croscopic characteristics, but it is also useful in predicting

the census of the whole graph. In other words, if we know

the hidden tendencies in the network, monitoring the changes

over time in a limited sample of nodes is enough to predict

the actual triad census of the network at a later time point.

As a result, certain overall characteristic of networks, such

as their tendency toward mutuality and hierarchy, can be

figured out if we have information from an early census of the

graph. Computing the triad census for a social graph at one

snapshot is not an expensive or difficult task. What remains

costly, however, is computing a triad census for dynamic and

large, online networks that may change on a daily basis. As

we show in Figure 4, surprisingly accurate predictions can

be made concerning the actual frequency of triads based on

observing only a relatively few of them in a random ego-

centric approach. By observing triads within an ego-centric

network of only 900 nodes we could estimate the actual

frequency of triads in the network with an average RMSD

of 0.0353.

The triad census consists of three values of ni, ei and the

relative difference between these two. Table II shows that we

could estimate values of ni, So we only need values of ei to

be able to come with
(ni−ei)

ei
and then make judgements about

networks properties and the dominant model.
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(a) Ranked Cluster (b) Forbidden

(d) Balance (e) Hierarchical Clusters (f) clusterability (g) Transitivity

Fig. 4: Comparison of observed and predicted values of
(ni−ei)

ei

Computing ei is not that difficult since it could be easily

computed from triads. We use Ti as the actual frequency and

T ′i as an estimation of a triad type i.
In the same manner we could define ei and e′i. In Table I in

Section III we demonstrate how ei is computed by using the

dyad census M ,A and N . The estimation of the dyad census

is then computed from our frequency estimation n′i as follows.

Since they are estimates, and not the actual values, we depict

them by M ′,A′ and N ′. They are estimated as follow:

A
′
=

1∑n

i=1
n′ − i− 2

×
(
3(T

′
9 + T

′
10) +

2(T
′
2 + T

′
4 + T

′
5 + T

′
6 + T

′
12 + T

′
13 + T

′
14) +

T
′
15 + T

′
7 + T

′
8

)
(1)

N
′
=

1∑n

i=1
n′
i
− 2

×
(
3(T

′
1) + 2(T

′
2 + T

′
3) +

T
′
4 + T

′
5 + T

′
6 + T

′
7 + T

′
8 + T

′
11

)
(2)

M
′
=

1∑n

i=1
n′
i
− 2

×
(
3(T

′
16) + 2(T

′
15 + T

′
11) +

T
′
14 + T

′
13 + T

′
12 + T

′
7 + T

′
8 + T

′
3

)
(3)

Having M ′,A′ and N ′, e′i could be easily computed for

i = 1 · · · 16. As noted before, what influences the evaluation

of the tendency of the network is not its frequency, nor its

expected frequency, but how much these two differ. In Figure

4 we compare
(ni−ei)

ei
and

(n′
i−e′i)
e′
i

for testing intervals 5 and

6. As can be seen in Figure 4, the actual and expected values

for the various triads are matched extremely closely. The

results in these figures provide strong evidence of the accuracy

of the ego-centric approach we describe above. Figure 4

demonstrates that our approach extracts almost the identical

results as does the actual, empirical triad census. Indeed it is

as useful in extracting the global properties of our graph as

is the triad census. For example, as both
(ni−ei)

ei
and

(n′
i−e′i)
e′
i

suggest, the wallpost data set shows a high tendency toward

balance, and hierarchical clusterability.

V. CONCLUDING REMARKS & FUTURE WORK

In this work, we examined the evolution of the triad census

as a tool to verify network properties of large scale, online

social network graphs in an efficient and inexpensive manner.

We introduced the use of an ego- centric, two step, random

seed, sampling approach to obtain a empirical network in

which to examine transitions in the triad census. We observed

that the properties predicted by the triad census of individual

networks closely matched the triad census of the actual data.

We also established that the triad census approach can be

used to efficiently extract and verify global properties of the

network. Finally, we undertook two sets of time series analyses

to predict network changes over time, and we verified that our

predictions closely matched the empirical data, with relatively

low rates of error. In future work we want to apply the triad

census approach, and the ego-centric, random seed sampling

method, to compare changes over time in other types of large

scale, social network data, such as those obtained from Twitter
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Triad Frequency(Interval 5) Prediction(Interval 5) Frequency(Interval 6) Prediction(Interval 6) rmsd

1-003 448533859933.0 448475403926.0 448460849133.0 448480239428.0 0.0001

2-012 614176381.0 637783022.123 652592306.0 656659850.05 0.0430

3-102 485143509.0 507366527.293 519524096.0 524312987.09 0.0584

4-021D 147667.0 146561.223782 164196.0 160624.069092 0.0393

5-021U 296705.0 294489.083538 328490.0 325478.044129 0.0214

6-021C 152339.0 153013.825315 171627.0 169341.982803 0.0251

7-111D 346903.0 349448.342403 395650.0 394576.229461 0.0150

8-111U 371269.0 372238.246191 415453.0 414842.342445 0.0055

9-030T 10258.0 10338.9471599 11376.0 11312.9076131 0.0161

10-030C 144.0 134.08797654 174.0 158.134897361 0.2100

11-201 377538.0 378269.62461 423261.0 423643.790876 0.0043

12-120D 5641.0 5644.54013356 6525.0 6550.67919087 0.0085

13-120U 14726.0 14909.40809 16168.0 16277.3625223 0.0266

14-120C 2968.0 3061.0227511 3555.0 3613.57305893 0.0770

15-210 16869.0 16854.9554356 19379.0 19379.2867832 0.0018

16-300 12990.0 13054.3109807 14451.0 14394.3415757 0.0139

TABLE II: Census Regression

and email correspondence. A comparison of different networks

will demonstrate the types of online interactions that can

be predicted most, and least, accurately using triad census

information. More generally, we plan to apply our findings

to the important task of network link prediction.
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Transition T0-T1 T1-T2 T2-T3 T3-T4 T4-T5 PredictionT4−T5 T5 − T6 PredictionT5−T6 rmsd
1(003)-1(003) 0.986 0.989 0.991 0.991 0.991 0.9935 0.991 0.9952 0.0035
1(003)-2(012) 0.008 0.006 0.005 0.005 0.005 0.0035 0.005 0.0025 0.0021
1(003)-3(102) 0.005 0.003 0.002 0.002 0.002 0.0005 0.001 -0.0005 0.0015
2(012)-2(012) 0.945 0.945 0.952 0.957 0.957 0.9605 0.964 0.9648 0.0025
2(012)-3(102) 0.037 0.041 0.036 0.032 0.032 0.0315 0.026 0.0295 0.0025

2(012)-4(021D) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0000
2(012)-5(021U) 0.006 0.005 0.003 0.003 0.003 0.0015 0.003 0.0004 0.0021
2(012)-6(021C) 0.003 0.002 0.001 0.002 0.002 0.001 0.002 0.0006 0.0012
2(012)-7(111D) 0.002 0.002 0.001 0.001 0.001 0.0005 0.001 0.0001 0.0007
2(012)-8(111U) 0.002 0.001 0.001 0.001 0.001 0.0005 0.001 0.0002 0.0007
2(012)-11(201) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0000
3(102)-3(102) 0.984 0.987 0.99 0.99 0.99 0.993 0.991 0.9951 0.0036

3(102)-7(111D) 0.005 0.004 0.002 0.003 0.003 0.0015 0.002 0.0007 0.0014
3(102)-8(111U) 0.004 0.003 0.002 0.002 0.002 0.001 0.002 0.0003 0.0014
3(102)-11(201) 0.006 0.004 0.003 0.003 0.003 0.0015 0.002 0.0005 0.0015

4(021D)-4(021D) 0.912 0.901 0.904 0.928 0.928 0.924 0.937 0.9291 0.0063
4(021D)-8(111U) 0.064 0.079 0.075 0.054 0.054 0.0595 0.048 0.0561 0.0069
4(021D)-9(030T) 0.007 0.004 0.005 0.006 0.006 0.005 0.005 0.0048 0.0007
4(021D)-11(201) 0.01 0.012 0.009 0.007 0.007 0.0065 0.005 0.0053 0.0004

4(021D)-12(120D) 0.003 0.001 0.002 0.001 0.001 0.0005 0.001 0.0 0.0008
4(021D)-13(120U) 0.001 0.0 0.001 0.0 0.0 0.0 0.0 -0.0002 0.0001
5(021U)-5(021U) 0.959 0.955 0.956 0.958 0.958 0.9565 0.964 0.9563 0.0055
5(021U)-7(111D) 0.032 0.035 0.037 0.033 0.033 0.0355 0.028 0.036 0.0059
5(021U)-9(030T) 0.003 0.002 0.001 0.002 0.002 0.001 0.002 0.0006 0.0012
5(021U)-11(201) 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.0029 0.0001

5(021U)-13(120U) 0.001 0.001 0.001 0.0 0.0 0.0 0.0 -0.0003 0.0002
6(021C)-6(021C) 0.903 0.894 0.904 0.916 0.916 0.9165 0.929 0.9214 0.0054
6(021C)-7(111D) 0.046 0.041 0.04 0.043 0.043 0.04 0.031 0.039 0.0060
6(021C)-8(111U) 0.04 0.054 0.045 0.032 0.032 0.0345 0.034 0.0312 0.0027
6(021C)-9(030T) 0.005 0.004 0.004 0.003 0.003 0.0025 0.001 0.0019 0.0007
6(021C)-11(201) 0.002 0.003 0.003 0.001 0.001 0.0015 0.001 0.0012 0.0004

6(021C)-13(120U) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0000
6(021C)-14(120C) 0.0 0.0 0.0 0.001 0.001 0.001 0.0 0.0013 0.0009
7(111D)-7(111D) 0.947 0.944 0.949 0.962 0.962 0.963 0.967 0.968 0.0010
7(111D)-11(201) 0.046 0.049 0.046 0.032 0.032 0.032 0.028 0.0275 0.0004

7(111D)-12(120D) 0.002 0.002 0.001 0.001 0.001 0.0005 0.002 0.0001 0.0014
7(111D)-14(120C) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.0 0.0007
7(111D)-15(210) 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.0009 0.0001
8(111U)-8(111U) 0.95 0.951 0.954 0.955 0.955 0.957 0.963 0.9588 0.0033
8(111U)-11(201) 0.039 0.039 0.039 0.037 0.037 0.037 0.03 0.0364 0.0045

8(111U)-13(120U) 0.006 0.004 0.003 0.003 0.003 0.0015 0.003 0.0005 0.0021
8(111U)-14(120C) 0.001 0.0 0.0 0.001 0.001 0.0005 0.0 0.0005 0.0005
8(111U)-15(210) 0.002 0.002 0.001 0.001 0.001 0.0005 0.001 0.0001 0.0007
9(030T)-9(030T) 0.916 0.914 0.91 0.904 0.904 0.901 0.923 0.897 0.0185

9(030T)-12(120D) 0.031 0.028 0.036 0.033 0.033 0.0355 0.03 0.0369 0.0052
9(030T)-13(120U) 0.038 0.044 0.036 0.038 0.038 0.037 0.032 0.0362 0.0031
9(030T)-14(120C) 0.008 0.005 0.01 0.015 0.015 0.016 0.012 0.0186 0.0047
9(030T)-15(210) 0.005 0.006 0.006 0.007 0.007 0.0075 0.002 0.0081 0.0043
9(030T)-16(300) 0.002 0.0 0.0 0.0 0.0 -0.001 0.0 -0.0016 0.0013

10(030C)-10(030C) 0.923 0.85 0.74 0.892 0.892 0.8005 0.937 0.7802 0.1284
10(030C)-14(120C) 0.076 0.15 0.259 0.107 0.107 0.1985 0.062 0.2187 0.1283
10(030C)-15(210) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0000
11(201)-11(201) 0.991 0.993 0.993 0.994 0.994 0.995 0.994 0.9959 0.0015
11(201)-15(210) 0.004 0.004 0.003 0.003 0.003 0.0025 0.003 0.0021 0.0007
11(201)-16(300) 0.003 0.002 0.002 0.002 0.002 0.0015 0.001 0.0012 0.0004

12(120D)-12(120D) 0.912 0.94 0.912 0.944 0.944 0.944 0.944 0.9508 0.0048
12(120D)-15(210) 0.081 0.057 0.082 0.048 0.048 0.0485 0.053 0.0411 0.0084
12(120D)-16(300) 0.005 0.001 0.004 0.007 0.007 0.0065 0.002 0.0074 0.0038

13(120U)-13(120U) 0.967 0.963 0.952 0.959 0.959 0.9515 0.958 0.948 0.0088
13(120U)-15(210) 0.028 0.033 0.044 0.036 0.036 0.044 0.039 0.0475 0.0083
13(120U)-16(300) 0.004 0.003 0.002 0.003 0.003 0.002 0.001 0.0016 0.0008

14(120C)-14(120C) 0.912 0.868 0.883 0.883 0.883 0.8685 0.936 0.8613 0.0538
14(120C)-15(210) 0.087 0.128 0.109 0.11 0.11 0.121 0.062 0.126 0.0459
14(120C)-16(300) 0.0 0.002 0.006 0.005 0.005 0.008 0.001 0.0099 0.0066
15(210)-15(210) 0.94 0.924 0.93 0.943 0.943 0.938 0.961 0.9395 0.0156
15(210)-16(300) 0.059 0.075 0.069 0.056 0.056 0.061 0.038 0.0595 0.0156
16(300)-16(300) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0000

TABLE III: Transition
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